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Abstract

Parallel computers offer the opportunity to significantly reduce the computation
time necessary to analyze large-scale aerospace structures. This paper presents algorithms
developed for and implemented on a massively-parallel computers hereafter referred to as
Scalable High Performance Computers (SHPC) for the most computationally intensive
tasks involved in structural analysis, namely, generation and assembly of system matrices,
solution of systems of equations and calculation of the eigenvalues and eigenvectors.
Results on SHPC are presented for large-scale structural problems (i.e. Models of high
speed civil transport).

The goal of this research is to develop new efficient technique which extend
structural analysis to SHPC and make large-scale structural analyses tractable.

1. Introduction

The finite element method is the most widely used algorithm to analyze large-scale
aerospace, automotive, marine and building structures. By far, the bulk of calculations in
structural analysis codes (exceeding 90% for large-scale analysis models) is associated with
the generation and assembly of the global stiffness matrix, [K], and the solution for
displacements, u, of [K] {u} = {p}, where p is the applied load. Initial attempts to
implement finite element methods on SHPC, using the traditional element-based approach,
have resulted in severe interprocessor communication/synchronization bottlenecks.
Attempts to eliminate these bottlenecks such element-based codes to eliminate these
bottlenecks have not yet been fully successful. A new nodal-based algorithm to generate

and assemble finite elements! eliminates interprocessor communication on SHPC. This
algorithm, which generates and assembles global stiffness (or mass) matrices simultaneously
on multiple processors, is described in section 2 with examples given in section 5. The
global stiffness matrix is generated and stored in a distributed manner on multiple
processors so an equation solver designed for SHPC can be used. Sections 3 and 4 describe
an accurate and efficient Gauss elimination equation solver for static and dynamic analysis
on SHPC.

2. Generation and Assembly of Systems of Equations

Traditional methods to generate a system of equations are element-based. In this
approach, each element is generated and then assembled into a global stiffness matrix.
However, the algorithm presented in this paper operates on nodes as opposed to elements.
In this "nodal approach", the contribution of each element at a node is generated and then
assembled into the global stiffness matrix. Each processor is assigned a node, or many
nodes, in a wrapped fashion, (i.e. node one is assigned to processor one, node two is
assigned to processor two and so on). Each processor computes only the contribution of



each element at its assigned node, and assembles the results into the global stiffness
matrix. Using this approach, no interprocessor communication is required. For
simplicity, the same element stiffness matrices are computed repeatedly by different
processors as they are needed. The element matrices may be stored in memory or on a
disk and subsequently retrieved. On existing SHPC, the computation time to assemble
element stiffness matrices is so negligible compared to the time required to communicate
data between processors which makes the nodal method an excellent choice.

The amount of interprocessor communication required by the traditional element-
based approach is qualitatively compared to that of the new nodal-based approach in
Table 1. for the three tasks which dominate finite element analysis on SHPC.

Interprocessor Communicaion
Task
Element approach Nodal approach
Element generation None None
Matrix assembly Significant None
Matrix distribution Significant None

Table 1: Interprocessor Communication Eliminated

Although both approaches require no interprocessor communication for element
generation, the element-based approach requires additional memory to store element
information associated with each neighboring element. Furthermore it requires
significant communication and synchronization between the processors. No such
communication or synchronization is required by the nodal-based approach. In addition,
only partial element stiffness matrices are actually required for the nodal-based approach
for matrix assembly and distribution. Achieving parallelism with no the communication
overhead makes the nodal method ideally suited for SHPC.

3. Solution of system of equations

The solution of systems of equations that have been generated and assembled by
the nodal-based algorithm is the most computationally intensive part of the finite element
analysis. An equation solver based on Gauss elimination has been developed and
compared with an iterative sovler; Preconditioned Conjugate Gradient (PCG) with
diagonal preconditiong. Both solvers were implemented and performance compared on
an Intel i860 Gamma supercomputer. The solution times are compared for both methods
for the Mach 2.4 High Speed Civil Transport (HSCT) Model (see Fig. 1).
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Fig. 1. Solution time for the HSCT Mach 2.4 using Iterative (Preconditioned Conjugate
Gradient) and Direct (Gaussian Elimination) Methods

The equation solution time for Mach 2.4 HSCT problem using PCG was 850
seconds on 16 processors. However, the same problem took 54 second using Gauss
elimination.  For other structural models, the PCG method failed to converge, a
drawback for iterative solution technique. Thus, after numerous comparisons, the speed
and reliability of direct methods was found to be preferable for structures applications.
The following paragraphs describe the variable band Gauss elimination equation solver
developed.

The Gauss solver was developed to exploits SAXPY operations. Timing studies
show that to achieve equal load balancing and maximum performance, blocks of six or
more equations should be assigned to each processor in a wrapped manner. Since the
generated system of equations is distributed on each processor, there is no need to
redistribute the matrix.

The variable band storage scheme was selected over the skyline storage scheme to
eliminate the matrix distribution time (see Table 1). The slight increase in storage
required by the variable band scheme over the skyline storage scheme does not
significantly increase the computation time.

Two communication methods were compared: binary tree broadcast and ring
communication. In both methods, the solution procedure sends the first matrix row to all
processors, which they use the to update their own rows. This is accomplished on the
Intel 1860 by using the csend command with a "-1" (broadcast) option. This option
broadcasts coefficients of the first row to all processors in a binary tree fashion. Since the
speed for this broadcast scheme was found to be slow, an alternative ring communication
scheme was developed. Using ring communication, the coefficients of the first row are
sent using the csend command by specifying the receiving processor number. In this
case, the coefficients are sent to only one processor which is then free to perform
computation. The coefficients are then sent to the next processor, and so on as in a
"bucket brigade". Details of the comparison of the two broadcast methods is given in
section 5.2.

4. Vibration Analysis

To determine the dynamic response of a structure, a free vibration analysis is
carried out to find the lowest natural frequencies (or eigenvalues) and their associated
mode shapes. An eigensolver, based on the Lanczos method, has been compared to other



widely-used methods and shown to be efficient and accurate when only a few eigenvalues
of a large system are required. The most computationally intensive steps in the Lanczos
method are factoring the global stiffness matrix and the forward/backward equation
solution steps. The Gauss equation solver was implemented within the Lanczos method to
improve the efficiency of these computational steps.. The Lanczos algorithm has been
implemented on various computer architectures, including parallel computers with shared-
memory, vector computers and parallel/vector computers. Results of the Lanczos
eigensolver adapted for SHPC and run on the Touchstone DELTA system are presented in
Section 5.3.

5. Results

This section contains results of three SHPC:
1. Nodal generation and assembly of stiffness matrices
2. Solution of matrix equations systems
3. Vibration analysis

To evaluate these parallel methods, results were obtained for a variety of structural
models including a Control-Structures interaction (CSI) geostationary platform(Fig 2),
Mach 2.4 (fig 3), and 3.0 (Fig 5) versions of a high-speed civil transport(HSCT). The
important characteristics for the analysis are shown on the Figures, and more details may be
found in reference 2.

537 Nodes
1,647 Elements
3,188 Equations

108 Bandwidt

Fig. 2. CSI Structural Model of Geostationary Platform
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Fig. 3. Mach 2.4 High-Speed Civil Transport Finite Element Model
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Fig. 4. High-Speed Civil Transport Structural Model

Detailed structural analyses were performed for the CSI and HSCT models on a Cray Y-
MP and Intel /860 Gamma and Delta supercomputers.

The 8 processors Cray Y-MP contained 256 megawords of memory and a 512
megaword solid state disk. The communication rate on the Cray Y-MP is fast (memory-
access speed). However, care was taken to minimize the synchronization time between
the processors as they simultaneously update the shared memory. Although
communication time is minimal, synchronization time may be critical and was
minimized to achieve an efficient equation solver. The Cray Y-MP is not considered a
SHPC.

The Intel Gamma /860 consists of 128 processors each with peak performance of
60 MFLOPS and 8 million bytes of memory (§MB). The Intel Delta SHPC contains 576
processors with 16 MB of memory arranged in a two-dimensional mesh with a peak
communication rate between two adjacent processors of 12 megabytes/sec. The inter-
processor communication on the Intel /860 is performed via message passing. The inter-
processor communications bandwidth and the communications software limit the
communication speed that can be achieved. The communications bandwidth is
recognized as critical to maximizing total computational performance and has been



undergoing significant improvement(i.e. 2.7 MB/sec on the Intel Gamma, 12.2 MB/sec
on the Intel Delta, and 200 MB/sec on the Intel Paragon).

5.1 Nodal Generation and Assembly

The nodal algorithm to generate and assemble the stiffness matrix for the Mach
2.4 HSCT structural model was run on from 16 to 512 Delta processors is shown in Fig.
5. Since no communication is involved., a near perfect speedup is obtained as the
number of processors increases. The solution time on 512 Delta processors is clearly
faster than similar results obtained on the Cray Y-MP (left of Fig 5).
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Fig. 5. Node-based Matrix assembly time for Mach 2.4 HSCT

The generation and assembly of the stiffness matrix for the Mach 3.0 HSCT
resulted in a global stiffness matrix with 88,416 unknown displacements (equations)
having a maximum bandwidth of 2,556. This bandwidth was reduced using a Reverse
Cuthill McGee node-reordering technique from an initial bandwidth of 78,000. The
HSCT application required 256 processors on the Intel Delta SHPC since the stiffness
matrix and geometric data required 3.328 Gigabyte of memory (13 MB/processor). The
computation total time to generate and assemble the global stiffness matrix for this HSCT
model on both the Cray and Delta supercomputers is compared in Fig. 6.
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Fig. 6. Node-based Matrix assembly time for Mach 3.0 HSCT

The generation and assembly of the stiffness matrix for this example executed on
one Cray Y-MP processor initially took 630 seconds using the new nodal method with
compiler optimization. After the key routines were rewritten to include "loop unrolling",
the time was reduced to 210 seconds. Loop unrolling reduces computation time since it
permits simultaneous use of the add and multiply functional units. Moreover, the best
time obtained for the element-based algorithm on the Cray Y-MP was 70 seconds with
loop unrolling optimization. Nevertheless, as previously mentioned, the element-based
approach does not parallize well, and is not suitable for SHPC.

The times to generate and assemble the stiffness matrix for the Mach 3.0 HSCT on
the corresponding Delta supercomputer were 15.1 and 7.5 seconds on 256 and 512
processors, respectively, using compiler optimization. After rewriting the algorithm to
include loop unrolling, the times were further reduced to 6.3 and 3.2 seconds on 256 and
512 processors, respectively. The algorithm involves matrix-vector and matrix-matrix
multiplications on small element matrices (at most 18x18), which leads to short-vector
operations. Thus, it would not be expected that this algorithm would perform very well
on vector computers such as the Cray. Since the nodal algorithm is perfectly parallel a
excellent performance is achieved on SHPC. For the Mach 3.0 HSCT problem, the
measured performance was 1.6 and 3.05 GigaFLOPS on 256 and 512 processors,
respectively.

5.2 Solution of system of Equations

Equation solution time dominates static and vibration analyses. The matrix
factorization in Gauss method is most critical for static analysis, forward/backward
substitution is most critical for vibration analysis. This section focuses on factorization,
while the next section focuses on forward/backward substitution. A Gauss elimination
algorithm using a variable band storage scheme was implemented in FORTRAN on the
Intel i860. The first implementation of this algorithm, denoted RowSolver was not
vectorized. The time to solve a 1000 full, symmetric equations on the Intel Gamma for
three direct methods is shown in Fig. 7.
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Fig. 7: Time comparison for three direct equation solvers on the Gamma for the 1000 x
1000 equations.

RowSolver is a Gauss elimination solver written in FORTRAN with no
vector optimization. PVSOLVE-1 is a Choleski solver using loop unrolling (level six).
PVSOLVE-2 is a Choleski solver using loop unrolling (level six) and a dot product
routine written in assembly code. The RowSolver solution time is 65 seconds on one
processor, while PVSOLVE-2 took 18 seconds. On 16 processors, RowSolver took 6.5
seconds and PVSOLVE-2 took 5.5 seconds. Regardless of how well the equation solvers
were vectorized on one processor, the vector speed becomes less significant when many
processors are used. Based on these results, loop unrolling is not used to obtain vector
speed for subsequent results.

Solution time for a simplified Mach 3.0 HSCT model with 1646 equations and an
average bandwidth of 321 were obtained using an early version of RowSolver to obtain
the breakdown of the solution time on the Delta shown in Fig. 8.
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Fig. 8. Solution Time Breakdown for Simplified Mach 3.0 HSCT Model

Although the compute time decreases as the number of processors increases, the
communication time increases, resulting in a net decrease in overall performance beyond
32 processors. This is a typical tradeoff between computation and communication time
for a fixed problem size. When a certain number of processors is fixed, there may not be
sufficient computations to perform on each processor to offset the communication
required. Thus, reducing the communication time is even more critical than reducing the
CPU time. Two communication schemes were evaluated. Of these, ring communication
was found to perform best for equation solution.
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Fig. 9. Communication Time when solving HSCT M2.4

When the broadcast communication method is used, the time to communicate
between processors increases as the number of processors increases linearly on both the



Gamma and Delta SHPC. On the other hand, ring communication remains constant as the
number of processors increases. Thus, ring communication is preferred, in particular as
the number of processors is large.

The effect of changing the number of equations assigned to each processor(block
size) for the Mach 2.4 HSCT is shown in Fig. 10.
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Fig. 10. Communication time vs. block size for Mach 2.4 HSCT on Intel Gamma.

As the number of equations per block increases, the communication time
decreases. For example, when 16 processors are used, and one equation is assigned to
each processor, the time to communicate is 180 seconds. This time reduces to 90 seconds
when 6 equations are assigned to a processor. As the number of equations per processor
increases beyond six equations per processor, the reduction in communication time
becomes less dramatic and appears asymptotic. For structural applications, assigning each
structural node (with 6 degrees of freedom) to a processor (i.e. six equation per processor),
should result in good performance.

The RowSolver performance solution time reduces in direct proportion to the
bandwidth of the structural matrix. In order to illustrate the point a symmetric banded
matrix with a fixed bandwidth of 1000 and a varying number of equations was considered.
The solution time for varying the number of equations from 5000 to 10000 is shown in Fig
11.
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Fig. 11. Solution time vs. number of equations and processors for fixed bandwidth.

The time to solve 5000 equations with on 16 processors is 66.7 seconds, and 44.5 seconds
on 32 processors in 44.5 seconds. The speed up between 8 and 16 processors is 1.5. On
the other hand, a matrix with 7000 equations took 97 seconds to solve on 16 processors,
64.5 seconds on 32 processors. The speed up between 16 and 32 processors is 1.5. For a
constant bandwidth of 1000, a reduction in computation time is shown in Fig. 11 for up to
32 processors, regardless of the number of equations solved. However, if more than 32
processors are used, there is no further time reduction because the slow communication
rate offsets the faster computation rate.

A different case is a "computation bound" problem solved on multiple processors,
when the number of equations is held constant (i.e. 5000 as shown in Fig. 12). Here the
bandwidth is increased from 500 to 1500, so even though the number of computations
increases, but the computation time decreases as the number of processors is increased.
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Fig. 12. Solution time for increased work (bandwidth) on the Gamma.

For a problem with a fixed number of equations and varying bandwidths, the
solution time increases linearly as the bandwidth increases. However as Fig. 12
illustrates, for a small bandwidth of 500, the minimum computational time was obtained
using 16 processors, while for a bandwidth of 1000, it was obtained using 32 processors
and for a bandwidth of 1500, it was obtained using 64 processors. For a matrix with 5000
equations and 1500 bandwidth, the time used to solve the problem on 16 processors is
164.5 seconds, and 100 seconds on 32 processors. The speed up between 16 and 32
processors is 1.64, while the speed up to solve 5000 equations with 1000 bandwidth is 1.5
( from previous example). Thus, one can expect the computational efficiency to improve
as the bandwidth increases since the number of computations performed on each processor
is increased. This is not true if the communications rate were increased dramatically, but
is typical of future well-balanced multiple processor computers having a high
interprocessor communication rate is.

For the Mach 2.4 HSCT model, the minimum computation time obtained on one
Cray Y-MP processor was 8.7 seconds (see Fig. 13), while the time was 32 seconds on 32
Intel Delta processors.
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Fig. 13. Equation Solution Comparison (HSCT Mach 2.4)

A continual reduction in solution time is shown in Fig. 13 for RowSolver as the
number of processors increases from 8 to 32. Unfortunately, for more than 32 processors,
the computation time increases. This is attributed to primarily to the relatively slow
communication rate (12.2 MB/sec) on the Delta. This rate expected to be 200 MB/sec for
the next generation Intel Paragon.

The minimum time to solve the Mach 3.0 model on 512 processors on the Intel
Delta was 532 seconds as shown in Fig. 14.
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Fig. 14. Solution time for Mach 3.0 HSCT

The same problem took 530 seconds on one Cray Y-MP processor using an
optimized banded solver, PVSOLVE3. Fig. 14 which shows a breakdown time for
solving Mach 3.0 HSCT with factorization and forward substitution consuming the
majority of time. For 256 processors, 500 seconds is spent in factorization and forward

substitution, with only 30 seconds in backward substitution. The time breakdown for
matrix factorization on the Intel Delta shown in Fig. 15.
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Fig. 15. Factorization time breakdown for Mach 3.0 HSCT

Although the computation time decreases as the number of processors increases,
the communication time increases. For such large problem, the majority of time (over 450
seconds), is associated with communication while the computation time only 25 seconds
on 512 processors.

For the Mach 2.4 HSCT analysis with the small bandwidth, the total Intel Gamma
time was 4 times that than for one processor on a Cray. For the Mach 3.0 HSCT analysis
with the large bandwidth, the Cray and the Intel solution times were approximately the
same. This shows that SHPC become more efficient as the problem size increases.

5.3 Vibration Analysis

An analysis of the computation time for the Lanczos eigensolver shows that the
equation solver, which is called at each iteration step, consumes nearly all of the time, as
shown in Fig. 16.
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Fig. 16 Total solution time for HSCT Mach 2.4 HSCT

A new SHPC eigensolver based on the Lanczos method, has a modular design
which enables the most up-to-date equation solver to be incorporated in it. An improved
version of RowSolver (using ring communication) was implemented in the eigensolver.
Fig. 17 shows the resulting decrease in computation time using this solver, solving the
Mach 2.4 HSCT problem on 8 processors of the Delta computer.
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Fig. 17 Vibration analysis time study for Mach 2.4 HSCT comparing ring and broadcast
communication

A comparison of the time to compute the eigenvaluse for the Mach 2.4 HSCT on
8 and 16 processors is shown in Fig. 18. The time to factor the matrix shows a small
decrease in computation time. However, the time to solve remains constant due to the
required serial operations in the forward/backward solution step. The eigenvector



computation parallize well, as do the many matrix-vector and matrix-matrix
multiplications.
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Fig. 18 Vibration analysis time for Mach 2.4 HSCT
Conclusion

The node-based algorithm for the parallel generation and assembly of stiffness
matrices is perfectly parallel as no communication time is required. Near linear speedup
is achieved. for all applications tested. For current SHPC vector speed in not important,
communication time dominates when large number of processors are used. Ring
communication is faster than the traditional broadcast for large number of processors. The
speed of the parallel Gauss elimination equation solution algorithm performance depends
directly on the square of the bandwidth of the application. For small bandwidth problems,
insufficient computation is involved to realize gains possible by increasing the number of
processors. However, as the bandwidth increases, the performance of the equation solver
on an increasing number of processors improves. The communication was found to be
critical and consume the largest time (even 10x CPU time) for large applications on the
Intel i/860. This rate which is determined by both latency and the communication rate. It
is expected that the equation solver will run without changes on the Paragon with a
significant reduction in communication which in turn should dramatically reduce the
overall time. Since the speed of the eigensolver is directly proportional to the speed of the
equation solver, similar performance gains are expected for the eigensolver on the
Paragon.
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